

# Application Note - Implementation of the European Fuel Cell Dynamic Load Cycle (FC-DLC) in Scribner Fuel Cell Test Systems

Source: Tsotridis, G., Pilenga, A., Marco, G. D., and Malkow, T., "EU Harmonised Test Protocols for PEMFC MEA Testing In Single Cell Configuration For Automotive Applications; JRC Science for Policy Report" 2015; EUR 27632 EN, doi 10.2790/54653.

#### Introduction

Automotive PEMFC stacks are subjected to a range of operating conditions including high load (high current density / low voltage during acceleration), low load (small or near-zero current density / high voltage or OCV during idling or deceleration), rapid changes in load, as well as periods of steady-state operation (*e.g.*, when cruising).

Load cycling imposes a variable load on the fuel cell to simulate real-world driving conditions in a controlled setting, with the objective of evaluating the durability of the fuel cell to dynamic loading. This is often referred to as a "dynamic load cycle" or "simulated drive cycle." When a drive cycle such as the EU FC-DLC is repeatedly applied to the cell for 500 hours, it corresponds to a vehicle utilization of ~ 80 min/day over one year (annual mileage ~ 16,000 km).

In this Application Note, we describe how to implement the EU FC-DLC in a Scribner fuel cell test setup. Scribner has developed worksheets and tools that make implementation of the EU FC-DLC simple and easy.

### **Required Items**

- 840/850/890 Fuel Cell Test System & FuelCell® software ver. 4.4e or later
- Single cell fuel cell 5 or 25 cm<sup>2</sup> or other size
- Excel® worksheet "*EU FC Dynamic Load Cycle for Arb Ctrl.xlsx*". Contact Scribner <u>fuelcellsupport@scribner.com</u> to obtain a copy of this worksheet.
- Ultra-high purity (99.990%) H<sub>2</sub>, Air and N<sub>2</sub>
- High purity water (ASTM Grade 1, 18  $\Omega$ -cm)
- Back pressure unit (optional)

### **Procedure**

Implementation of the EU FC-DLC requires determining the performance (*i.e.*, current density) of the cell at 0.65 V. As described in the protocol:

The 100% current load value to be used in the FC-DLC is defined by the average current density of the ascending and descending polarization curve measurements to yield a cell voltage of 0.65V

Open the Excel file "*EU FC Dynamic Load Cycle for Arb Ctrl.xlsx*".¹ Follow the instructions to create an Arbitrary Control file (.fcc) that replicates the FC-DLC profile:

<sup>&</sup>lt;sup>1</sup> Contact Scribner <u>fuelcellsupport@scribner.com</u> to obtain a copy of the worksheet.



1. Starting on the "Setup" tab, enter the Cell Area (cm²) in cell **C4** and the Current Density (A/cm²) at 0.65 V in cell **C5**. The worksheet will calculate the current density and current at each point based on the % Current Load profile as defined in the protocol (see Appendix below or the Source).



2. Switch to the "Arb Ctrl – EU FC-DLC" tab and save the file as a Text (Tab delimited) file (.txt).







3. Change the extension of the saved text file to that of an Arbitrary Control file (.fcc).





4. In FuelCell, insert an Arbitrary Control Experiment:



5. In the Experiment section of the Arbitrary Control Experiment, select the saved Arbitrary Control file (.fcc) as the *Control Setup File*:







6. Use a Repeat Loop to execute the FC -DLC multiple times. You can select to have all repeat cycles saved as a single file, or each repeat cycle saved as a separate data file:







The figures below show the results of four (4) cycles of the EU FC-DLC for a 25cm² Gore PRIMEA MEA at 80 °C at 200 kPa<sub>abs</sub>, 1.3x H<sub>2</sub> / 2.0x Air, 80 °C / 75 °C dew point (100% / 82% RH on Anode/Cathode respectively). The current density at 0.65 V was 1.3 A/cm² (*i.e.*, the 100% current load).







## Appendix - EU FC-DLC from Source.



EU Harmoniacd Test Protocols for PEMFC-MEA Testing in Single Cell Configuration for Automotive Applications



#### APPENDIX F: FUEL CELL DYNAMIC LOAD CYCLE- FC-DLC

The proposed Fuel Cell Dynamic Load Cycle (FC-DLC) is defined by 35 Test Points (TP) or steps as described in table F.1 and shown in figure F.1. The test duration of one complete cycle is 1181 seconds.

Table F.1: FC-DLC test points time/load

|      | Time   | Dwell  | Load  |
|------|--------|--------|-------|
| Step | [se c] | [50 C] | [%]   |
| 1    | 0      | 15     | 0.0   |
| 2    | 15     | 13     | 12.5  |
| 3    | 28     | 33     | 5.0   |
| 4    | 61     | 35     | 26.7  |
| 5    | 96     | 47     | 5.0   |
| 6    | 143    | 20     | 41.7  |
| 7    | 163    | 25     | 29.2  |
| 8    | 188    | 22     | 5.0   |
| 9    | 210    | 13     | 12.5  |
| 10   | 223    | 33     | 5.0   |
| 11   | 256    | 35     | 26.7  |
| 12   | 291    | 47     | 5.0   |
| 13   | 338    | 20     | 41.7  |
| 14   | 358    | 25     | 29.2  |
| 15   | 383    | 22     | 5.0   |
| 16   | 405    | 13     | 12.5  |
| 17   | 418    | 33     | 5.0   |
| 18   | 451    | 35     | 26.7  |
| 19   | 486    | 47     | 5.0   |
| 20   | 533    | 20     | 41.7  |
| 21   | 553    | 25     | 29.2  |
| 22   | 578    | 22     | 5.0   |
| 23   | 600    | 13     | 12.5  |
| 24   | 613    | 33     | 5.0   |
| 25   | 646    | 35     | 26.7  |
| 26   | 681    | 47     | 5.0   |
| 27   | 728    | 20     | 41.7  |
| 28   | 748    | 25     | 29.2  |
| 29   | 773    | 68     | 5.0   |
| 30   | 841    | 58     | 58.3  |
| 31   | 899    | 82     | 41.7  |
| 32   | 981    | 85     | 58.3  |
| 33   | 1066   | 50     | 83.3  |
| 34   | 1116   | 44     | 100.0 |
| 35   | 1160   | 21     | 0.0   |

56





EU Harmoniacd Test Protocols for PEMFC-MEA Testing in Single Cell Configuration for Automotive Applications



The graphical overview of the FC-DCL cycle profile is presented in the figure F.1

The 100% current load value to be used in the FC-DLC is defined by the average current density of the ascending and descending polarization curve measurements to yield a cell voltage of 0.65V



Figure F.1:
Fuel Cells Dynamic Load Cycle profile

57