Characterizing Through-Plane & In-Plane Ionic Conductivity of Polymer Electrolyte Membranes

Kevin R. Cooper
Scribner Associates, Inc.

Paper # B10-1043 presented at PEMFC-11, 220th ECS Meeting, Boston, MA

October 12, 2011

Portions of this work were supported by the U.S. DOE through the University of Central Florida (# DE-FC36-06GO16028). Data provided by BekkTech LLC is greatly appreciated.
Orientation and Nomenclature

TP = through-plane or through-thickness

IP = in-plane
 L = longitudinal = parallel to machine (extrusion) direction
 T = transverse = perpendicular to machine direction
Is the conductivity of Nafion® isotropic? ... No consensus in published literature

- No, it is anisotropic
 - \(\sigma_{\text{IP}} : \sigma_{\text{TP}} = 3.6 \) [Gardner]
 - \(\sigma_{\text{IP}} : \sigma_{\text{TP}} = 2.5 - 5 \) (w/ Pressure) [Ma]
 - \(\sigma_{\text{IP}} : \sigma_{\text{TP}} = 1.8 - 5 \) [Casciola]
 - This work (N112)

- Yes, it is isotropic, \(\sigma_{\text{IP}} : \sigma_{\text{TP}} \approx 1 \)
 - Nouel, Silva
 - Cooper (NR-212)

- Discrepancy due
 - Different water content (\(\lambda \))
 - Not accounting for non-membrane ohmic contributions in TP measurements

- Anisotropic within the plane for extruded material: \(\sigma_{\text{IP-Long}} > \sigma_{\text{IP-Trans}} \)

Casciola et. al., *J. Power Sources* **162** 141 (2006)
Ma et. al., *JES* **153** A2274 (2006)
Objective: Measure and compare in-plane and through-plane ion conductivity of polymer electrolyte membranes

In-plane
- Pro: geometry allows true 4-electrode configuration \(\rightarrow \) implementation & data interpretation are easy
- Con: not orientation of interest

Through-plane
- Pro: measured parameter is in orientation of interest
- Con: measurement and data analysis more difficult
- Instrument & methods recently developed [1]

\[
\sigma_{IP} = \frac{L}{R \cdot A} = \frac{L}{R \cdot W \cdot T}
\]

\[
\sigma_{TP} = \frac{T}{R \cdot A}
\]

Experimental

- Materials
 - Nafion® 112 and NR-212 – non-supported PEM
 - GORE-SELECT® – supported PEM

- Through-plane – Membrane Test System MTS 740 [1]
 - Integrated membrane clamp and electrodes
 - Environmental control & measurement – T, dew point, RH, gas flow, etc.

- In-plane – BekkTech BT-110 Conductivity Clamp
 - Located in MTS 740 chamber for environmental control

Procedure – Pre-test

- As-received membrane, stored at ambient conditions
- 32 mm x 10 mm sample
- Measure “dry” membrane thickness
 - Mean of 5 locations, 3x measurements/location
 - Brunswick Instruments
 - low load (50 g)
 - high accuracy gage (±0.2 μm for 50 μm sample)
Procedure

- Temperature series (°C): 80 → 30 → 120

- Per temperature
 - Wet-up 2 hr @ 70% RH
 - RH cycle: 70 → 20 → 95%, 15 min or 95% → 20%, 30 min
 - Resistance measurement after 15 or 30 min

- Through-plane: 2-electrode / 4-terminal impedance measurement
 - 10 MHz – 1 Hz, 10 mV_{AC}, 0 V_{DC}

- In-plane: 4-electrode / 4-terminal DC measurement

<table>
<thead>
<tr>
<th>Temp, °C</th>
<th>Total Dry Gas Flow, sccm</th>
<th>Pressure, kPa_a</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>500</td>
<td>100</td>
</tr>
<tr>
<td>80</td>
<td>500</td>
<td>100</td>
</tr>
<tr>
<td>120</td>
<td>500</td>
<td>230</td>
</tr>
</tbody>
</table>
Post-test Procedure – EIS Analysis of Through-Plane Data

Increasing RH, decreasing R_{hf}

R_{hf}

Z', ohm

Z'', ohm

$|Z|$, ohm

Frequency, Hz

Theta, deg.

Z', ohm

Z'', ohm

$|Z|$, ohm

20% RH
40% RH
60% RH
80% RH
95% RH

R_{hf}
Through-thickness Measurement Method and Ohmic Resistance Sources

- Ohmic resistances that contribute to the high frequency resistance, R_{HF}:
 - Membrane – dominate
 - Pt electrode – very small
 - GDE – very small
 - Pt electrode / GDE contact – very small
 - GDE/membrane interface – $f(RH,T)$; can be significant

- Non-membrane ohmic resistances (R_{cell}) must be accounted [1]

Comparing through-plane & in-plane conductivity of dispersion-cast Nafion® NR-212

\[\sigma_{\text{in-plane}} \approx \sigma_{\text{through-plane}} \]

1. Conductivity based on thickness measured at ambient T & RH
2. TP data corrected for non-membrane ohmic contributions
Is the conductivity of dispersion-cast Nafion® NR-212 isotropic? … YES

\[\sigma_{IP} : \sigma_{TP} \approx 1 \]
- 3 temperatures
- Low to high RH

<table>
<thead>
<tr>
<th>% RH</th>
<th>30 °C</th>
<th>80 °C</th>
<th>120 °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>1.30</td>
<td>0.87</td>
<td>1.20</td>
</tr>
<tr>
<td>40</td>
<td>1.03</td>
<td>0.94</td>
<td>1.11</td>
</tr>
<tr>
<td>60</td>
<td>1.10</td>
<td>0.95</td>
<td>0.92</td>
</tr>
<tr>
<td>80</td>
<td>1.03</td>
<td>0.93</td>
<td>0.86</td>
</tr>
<tr>
<td>90</td>
<td>1.00</td>
<td>0.90</td>
<td>0.86</td>
</tr>
<tr>
<td>95</td>
<td>1.05</td>
<td>0.98</td>
<td>0.81</td>
</tr>
</tbody>
</table>

\[\bar{x}_{1s} \] 107.08 0.930.03 0.990.14

\(\sigma_{IP} = \text{in-plane}, \ \sigma_{TP} = \text{through-plane} \)
Through-plane & in-plane conductivity of extruded Nafion® 112

IP Longitudinal > IP Transverse > TP for extruded Nafion®

1. Conductivity based on nominal thickness (51 mm)
2. Through-plane resistance corrected for non-membrane ohmic resistance
3. Mean ± 3s, N = 3

Nafion® 112, 80 °C
Is the conductivity of extruded Nafion® 112 isotropic? ... NO

IP Longitudinal > IP Transverse > TP

<table>
<thead>
<tr>
<th>% RH</th>
<th>IP-L : TP</th>
<th>IP-L : IP-T</th>
<th>IP-T : TP</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>1.60</td>
<td>1.42</td>
<td>1.12</td>
</tr>
<tr>
<td>40</td>
<td>1.46</td>
<td>1.45</td>
<td>1.00</td>
</tr>
<tr>
<td>60</td>
<td>1.52</td>
<td>1.46</td>
<td>1.04</td>
</tr>
<tr>
<td>80</td>
<td>1.65</td>
<td>1.46</td>
<td>1.13</td>
</tr>
<tr>
<td>95</td>
<td>1.82</td>
<td>1.48</td>
<td>1.23</td>
</tr>
</tbody>
</table>

\[X_{1s} \, 1.61_{0.14} \, 1.46_{0.02} \, 1.11_{0.09} \]

- Test for equality of means
 - \(H_0 : \mu_1 = \mu_2 \); \(H_1 : \mu_1 \neq \mu_2 \)
 - \(\alpha = 5\% \)
- Statistically significant difference in means for all RHs
 - except IP-Trans vs. TP @ 40% RH

Nafion 112, 80 °C, 20% to 95% RH
N = 3, Error bar = range
IP = in-plane, TP = through-plane
Conductivity based on nominal thickness
Effective conductivity (σ_{eff}) of membrane with regions of unequal conductivity, e.g., ionomer-impregnated non-conductive porous support

\begin{align*}
\sigma &= \frac{1}{\frac{L}{R \cdot A}} \\
\text{In-Plane (IP)} &
\frac{1}{R_{\text{total}}} = \frac{1}{R_1} + \frac{1}{R_2} \\
\sigma_{\text{eff,IP}} &= f \cdot \sigma_1 + (1-f) \cdot \sigma_2 \\
\text{Through-Plane (TP)} &\cdot f = \text{fractional thickness of layer 1} \\
\sigma_{\text{eff,TP}} &= \frac{\sigma_1 \cdot \sigma_2}{(1-f) \cdot \sigma_1 + f \cdot \sigma_2}
\end{align*}
Effective conductivity with phases of unequal conductivity

\[
\sigma_{eff,IP} = f \cdot \sigma_1 + (1 - f) \cdot \sigma_2 \\
\sigma_{eff,TP} = \frac{\sigma_1 \cdot \sigma_2}{(1 - f) \cdot \sigma_1 + f \cdot \sigma_2}
\]

Fractional thickness of phase 1, \(f \)

\(\sigma_1 / \sigma_2 = 1 \)
\(\sigma_1 / \sigma_2 = 2 \)
\(\sigma_1 / \sigma_2 = 5 \)
\(\sigma_1 / \sigma_2 = 10 \)
Effective conductivity with phases of unequal conductivity

- \(\sigma_{\text{eff, in-plane}} > \sigma_{\text{eff, through-plane}} \) for supported membrane
- \(\sigma_{\text{eff, in-plane}} : \sigma_{\text{eff, through-plane}} \) is a maximum for \(f = 0.5 \)
- \(\sigma_{\text{eff, in-plane}} : \sigma_{\text{eff, through-plane}} \rightarrow 1 \) as \(f \rightarrow 0 \) or 1
- \(\sigma_{\text{eff, in-plane}} : \sigma_{\text{eff, through-plane}} \) increases as \(\sigma_1 : \sigma_2 \rightarrow 0 \) or >> 1

\[
\sigma_{\text{eff,IP}} = f \cdot \sigma_1 + (1-f) \cdot \sigma_2
\]
\[
\sigma_{\text{eff,TP}} = \frac{\sigma_1 \cdot \sigma_2}{(1-f) \cdot \sigma_1 + f \cdot \sigma_2}
\]

\(f \) = fractional thickness of phase 1
Comparing through-plane & in-plane conductivity of PFSA-based membrane with inert support GORE-SELECT®

- $\sigma_{\text{eff, in-plane}} > \sigma_{\text{eff, through-plane}}$
- $\sigma_{\text{eff, in-plane}} : \sigma_{\text{eff, through-plane}} \rightarrow 1$ as $f \rightarrow 0$ or 1

✓ Ratio is greater for thin membrane with same support thickness

<table>
<thead>
<tr>
<th>Thickness</th>
<th>$\frac{\sigma_{\text{eff, in-plane}}}{\sigma_{\text{eff, through-plane}}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>18 µm</td>
<td>1.53 ± 0.16</td>
</tr>
<tr>
<td>35 µm</td>
<td>1.11 ± 0.10</td>
</tr>
</tbody>
</table>

GORE-SELECT, GORE and designs are trademarks of W. L. Gore & Associates, Inc.

1. Conductivity based on thickness measured at ambient temperature & RH
2. Through-plane resistance corrected for non-membrane ohmic resistance
Conclusions

- Methods exist that can differentiate in-plane and through-plane ionic conductivity of PEMs
- Extruded Nafion® 112 exhibits anisotropic conductivity
 - $\sigma_{\text{IP-Long}} > \sigma_{\text{IP-Trans}} > \sigma_{\text{TP}}$
- Dispersion-cast Nafion® NR-212 exhibits isotropic conductivity
 - $\sigma_{\text{IP}} \approx \sigma_{\text{TP}}$
- Membranes with inert support, e.g., GORE-SELECT®, exhibit anisotropic conductivity
 - Consistent with simple analytical treatment

Results highlight the need to consider potential for anisotropic behavior and measure appropriately