Through-Plane & In-Plane Conductivity of Polymer Electrolyte Membranes

Scribner Associates, Inc.

www.scribner.com

September 2010

Large discrepancy in reported membrane conductivity data highlights need for accurate, robust measurement methods

Objective: Develop an accurate & reliable test apparatus & method for through-plane membrane resistance & conductivity measurements

- ➢ Key desirable features
 - ✓ Uses bare (non-catalyzed) membrane relevant thicknesses – 10 to 200 µm
 - ✓ Operate over a wide range of conditions
 - 30 to > 120 °C
 - dry to > 95% RH
 - 1 to 3 atm_a
 - \checkmark Rapid ~ 15 min per test condition
 - ✓ Robust accurate, repeatable and reliable

[S/cm]

 $=\frac{L}{R}$

 $\sigma_{\scriptscriptstyle{membrane}}$

Membrane Test System MTS 740

Wet-dry gas mixing for rapid RH cycling in both directions

Wet-dry gas mixing for controlled, rapid RH cycling

Comparing through-plane & in-plane conductivity of Nafion[®] NR-212

Proprietary Data – Disclosure permitted only with prior written permission from Scribner Associates, Inc.

Is the conductivity of Nafion[®] isotropic? ... No consensus in published literature

 $\sigma_{||}$ = in-plane, σ_{\perp} = through-plane

- \succ Yes, it is isotropic, $\sigma_{||}$: $\sigma_{⊥}$ ≅ 1 [Nouel; Silva]
 - ✓ This work for NR-212
- > No, it is anisotropic
 - ✓ $\sigma_{\parallel}:\sigma_{\perp}$ = 3.6 [Gardner]
 - ✓ $\sigma_{||}:\sigma_{\perp}$ = 2.5 5 (with pressure) [Ma]
 - ✓ $\sigma_{||}:\sigma_{\perp}=1.8-5$ [Casciola]
- Discrepancy due
 - ✓ Different water content (λ)
 - ✓ Extruded (N11X) vs. dispersion cast (NR-21X)

Gardner *et. al., J. Electroanal Chem* **449** 209 (1998) Ma *et. al., JES* **153** A2274 (2006) Casciola *et. al., J. Power Sources* **162** 141 (2006) Nouel, Fedkiw, *Electrochimica Acta* **43** 2381 (1998) Silva, *et. al., J. Power Sources* **134** 18 (2004)

$\boldsymbol{\sigma}_{||}{:}\boldsymbol{\sigma}_{\!\perp}\,\cong$ 1, NR-212, this work

% RH	30 °C	80 °C	120 °C
20	1.19	0.92	1.20
40	0.95	1.02	1.15
60	1.15	1.02	0.96
80	0.99	0.96	0.87
90	0.93	0.97	0.87
95	0.93	106	0.84

Proprietary Data – Disclosure permitted only with prior written permission from Scribner Associates, Inc.

Effective conductivity (σ_{eff}) of membrane with phases of unequal conductivity, e.g., ionomer-impregnated nonconductive porous support

$$\sigma_{\text{eff, in-plane}} = f \cdot \sigma_1 + (1 - f) \cdot \sigma_2$$

$$\sigma_{\text{eff, through-plane}} = \frac{\sigma_1 \cdot \sigma_2}{(1 - f) \cdot \sigma_1 + f \cdot \sigma_2}$$

$$f = \text{fractional thickness of phase 1}$$

ckness of phase 1

 $\succ \sigma_{eff, in-plane} > \sigma_{eff, through-plane}$ for supported membrane $\succ \sigma_{eff, in-plane}$: $\sigma_{eff, through-plane}$ is a maximum for f = 0.5 $\succ \sigma_{eff, in-plane} : \sigma_{eff, through-plane} \rightarrow 1 \text{ as } f \rightarrow 0 \text{ or } 1$ $\sigma_{eff, in-plane}: \sigma_{eff, through-plane}$ increases as $\sigma_1: \sigma_2 \rightarrow 0 \text{ or } >> 1$ Proprietary Data – Disclosure permitted only with prior written permission from Scribner Associates, Inc.

Comparing through-plane & in-plane conductivity (σ) of PFSA-based membranes with inert support *GORE-SELECT*[®]

Conclusions – Membrane Test System MTS 740

> Through-plane resistance & conductivity test system developed

- ✓ Bare membrane rapid, lower cost assessment vs. MEA / fuel cell testing
- ✓ Repeatable, accurate control of environmental conditions: cell to 150 °C, humidifier to 120 °C, dry to >95% RH
- ✓ Robust method repeatable and accurate
- Correction for non-membrane ohmic resistance contributions is important, especially for thin membranes with low resistance / high conductivity
- Dispersion cast Nafion[®] NR-212 though-plane conductivity is the same as in-plane
- Differentiate in-plane and through-plane conductivity for anisotropic material, e.g., GORE-SELECT[®] supported membrane

GORE-SELECT, GORE and designs are trademarks of W. L. Gore & Associates, Inc. Proprietary Data – Disclosure permitted only with prior written permission from Scribner Associates, Inc.

Supporting Information

- Electrode design
- > Test procedure
- > Analysis Procedure
- Determination of Cell Resistance

4-Electrode, "Offset" Electrode Design

Top View

U.S. Patent No. 7,652,479

Proprietary Data – Disclosure permitted only with prior written permission from Scribner Associates, Inc.

Offset electrode geometry for 4-probe conductivity measurement of thin film electrolytes

Y-axis is expanded 10x relative to X-axis

ScribnerAss

- As-received membrane, stored at ambient conditions
- 32 mm x 10 mm sample
- Measure "dry" membrane thickness
 - ✓ Mean of 5 locations, 3x measurements/location
 - ✓ Low load, high accuracy gage

Cell Assembly

- ✓ GDE (E-LAT) cut with jig
- Glue GDE to Pt electrode with carbon paste
- ✓ Load membrane between GDE-prepared plattens
- Compress ~ 2,200 kPa (325 psi) using spring loaded cell head (dial gage)

Procedure

- ▶ Temperature series (°C): $80 \rightarrow 30 \rightarrow 120$
- Per temperature
 - ✓ Wet-up 2 hr @ 70% RH
 - ✓ RH cycle: 70 \rightarrow 20 \rightarrow 90 \rightarrow 95 %, 15 min step
 - ✓ Impedance sweep after 15 min
- ~ 1 day/temperature, ~6 hr
- Gas: H_2 or N_2
- Impedance Measurement
 - ✓ 4-electrode, 4 terminal
 - ✓ Solartron 1260 FRA (standalone) / ZPlot[®]
 - ✓ 10 MHz 1 Hz, 10 mV_{AC}, 0 V_{DC}, 10 steps/dec (~ 2 min)

Temp, °C	Total Dry Gas Flow, sccm	Pressure, kPa _a
30	500	100
80	500	100
120	500	230

Proprietary Data – Disclosure permitted only with prior written permission from Scribner Associates, Inc.

Post-test Procedure – EIS Analysis

Post-test Procedure – EIS Analysis

Through-plane Resistance & Conductivity

Through-plane resistance includes *non-membrane* ohmic contributions, R_{cell}

Cell Resistance, $R_{cell} = R_{\Omega, electrode} + R_{\Omega, contact} + R_{\Omega, interface}$

Typically work in area specific resistance, ASR

 $ASR_{uncorrected} = R_{HF} \cdot A_{effective} \qquad [\Omega - cm^2]$

Accounting for the cell ASR(T,RH) gives the membrane resistance

 $ASR_{membrane} (T, RH) = ASR_{uncorrected} (T, RH) - ASR_{cell} (T, RH) \quad [\Omega - cm^{2}]$

 \checkmark Note that all are a f(T, RH)

The challenge: need ASR_{cell} (T,RH)

Determine ASR_{cell} by extrapolating linear regression of ASR vs. thickness to L = 0. Do this for each T, RH

Key Assumptions:

1.Intrinsic through-plane conductivity is <u>not</u> a function of *L*2.Cell resistance is constant from build-to-build

Cell resistance increases at low RH ... dominated by interfacial resistance

Increasing R_{cell} with decreasing RH also reported by W.L. Gore & Associates ¹

Proprietary Data – Disclosure permitted only with prior written permission from Scribner Associates, Inc.

Ratio of cell to membrane resistance highlights importance of correcting for non-membrane ohmic contributions

> At low RH, ratio is small relative to the membrane resistance

$$R_{cell}$$
 : $R_{membrane} \simeq 0.1 - 0.2$

At high RH, the cell resistance can be significant relative to the membrane resistance, especially for thin membranes

